3.16.42 \(\int \sec ^5(c+d x) (a+b \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx\) [1542]

3.16.42.1 Optimal result
3.16.42.2 Mathematica [A] (verified)
3.16.42.3 Rubi [A] (verified)
3.16.42.4 Maple [B] (verified)
3.16.42.5 Fricas [A] (verification not implemented)
3.16.42.6 Sympy [F(-1)]
3.16.42.7 Maxima [A] (verification not implemented)
3.16.42.8 Giac [A] (verification not implemented)
3.16.42.9 Mupad [B] (verification not implemented)

3.16.42.1 Optimal result

Integrand size = 31, antiderivative size = 122 \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=\frac {\left (3 a^2 A-A b^2-2 a b B\right ) \text {arctanh}(\sin (c+d x))}{8 d}+\frac {\sec ^4(c+d x) (B+A \sin (c+d x)) (a+b \sin (c+d x))^2}{4 d}+\frac {\sec ^2(c+d x) \left (2 b (2 a A-b B)+\left (3 a^2 A+A b^2-2 a b B\right ) \sin (c+d x)\right )}{8 d} \]

output
1/8*(3*A*a^2-A*b^2-2*B*a*b)*arctanh(sin(d*x+c))/d+1/4*sec(d*x+c)^4*(B+A*si 
n(d*x+c))*(a+b*sin(d*x+c))^2/d+1/8*sec(d*x+c)^2*(2*b*(2*A*a-B*b)+(3*A*a^2+ 
A*b^2-2*B*a*b)*sin(d*x+c))/d
 
3.16.42.2 Mathematica [A] (verified)

Time = 1.22 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.52 \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=\frac {4 \left (-a^2+b^2\right ) \sec ^4(c+d x) (a+b \sin (c+d x))^3 (A b-a B+(-a A+b B) \sin (c+d x))+\left (-3 a^2 A+A b^2+2 a b B\right ) \left (\left (a^2-b^2\right )^2 (\log (1-\sin (c+d x))-\log (1+\sin (c+d x)))+2 a^3 b \sec ^2(c+d x)-2 \left (a^4-b^4\right ) \sec (c+d x) \tan (c+d x)+\left (-6 a^3 b+4 a b^3\right ) \tan ^2(c+d x)\right )}{16 \left (a^2-b^2\right )^2 d} \]

input
Integrate[Sec[c + d*x]^5*(a + b*Sin[c + d*x])^2*(A + B*Sin[c + d*x]),x]
 
output
(4*(-a^2 + b^2)*Sec[c + d*x]^4*(a + b*Sin[c + d*x])^3*(A*b - a*B + (-(a*A) 
 + b*B)*Sin[c + d*x]) + (-3*a^2*A + A*b^2 + 2*a*b*B)*((a^2 - b^2)^2*(Log[1 
 - Sin[c + d*x]] - Log[1 + Sin[c + d*x]]) + 2*a^3*b*Sec[c + d*x]^2 - 2*(a^ 
4 - b^4)*Sec[c + d*x]*Tan[c + d*x] + (-6*a^3*b + 4*a*b^3)*Tan[c + d*x]^2)) 
/(16*(a^2 - b^2)^2*d)
 
3.16.42.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.47, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {3042, 3316, 27, 663, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^5(c+d x) (a+b \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \sin (c+d x))^2 (A+B \sin (c+d x))}{\cos (c+d x)^5}dx\)

\(\Big \downarrow \) 3316

\(\displaystyle \frac {b^5 \int \frac {(a+b \sin (c+d x))^2 (A b+B \sin (c+d x) b)}{b \left (b^2-b^2 \sin ^2(c+d x)\right )^3}d(b \sin (c+d x))}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b^4 \int \frac {(a+b \sin (c+d x))^2 (A b+B \sin (c+d x) b)}{\left (b^2-b^2 \sin ^2(c+d x)\right )^3}d(b \sin (c+d x))}{d}\)

\(\Big \downarrow \) 663

\(\displaystyle -\frac {b^4 \int \left (-\frac {(A-B) (a-b)^2}{8 b^2 (\sin (c+d x) b+b)^3}-\frac {(3 a A+b A-a B-3 b B) (a-b)}{16 b^3 (\sin (c+d x) b+b)^2}-\frac {3 A a^2-2 b B a-A b^2}{8 b^3 \left (b^2-b^2 \sin ^2(c+d x)\right )}-\frac {(a+b) (a (3 A+B)-b (A+3 B))}{16 b^3 (b-b \sin (c+d x))^2}-\frac {(a+b)^2 (A+B)}{8 b^2 (b-b \sin (c+d x))^3}\right )d(b \sin (c+d x))}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {b^4 \left (-\frac {\left (3 a^2 A-2 a b B-A b^2\right ) \text {arctanh}(\sin (c+d x))}{8 b^4}+\frac {(a-b) (3 a A-a B+A b-3 b B)}{16 b^3 (b \sin (c+d x)+b)}-\frac {(a+b) (a (3 A+B)-b (A+3 B))}{16 b^3 (b-b \sin (c+d x))}+\frac {(a-b)^2 (A-B)}{16 b^2 (b \sin (c+d x)+b)^2}-\frac {(a+b)^2 (A+B)}{16 b^2 (b-b \sin (c+d x))^2}\right )}{d}\)

input
Int[Sec[c + d*x]^5*(a + b*Sin[c + d*x])^2*(A + B*Sin[c + d*x]),x]
 
output
-((b^4*(-1/8*((3*a^2*A - A*b^2 - 2*a*b*B)*ArcTanh[Sin[c + d*x]])/b^4 - ((a 
 + b)^2*(A + B))/(16*b^2*(b - b*Sin[c + d*x])^2) - ((a + b)*(a*(3*A + B) - 
 b*(A + 3*B)))/(16*b^3*(b - b*Sin[c + d*x])) + ((a - b)^2*(A - B))/(16*b^2 
*(b + b*Sin[c + d*x])^2) + ((a - b)*(3*a*A + A*b - a*B - 3*b*B))/(16*b^3*( 
b + b*Sin[c + d*x]))))/d)
 

3.16.42.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 663
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (c_.)*(x_ 
)^2)^(p_.), x_Symbol] :> With[{q = Rt[(-a)*c, 2]}, Simp[1/c^p   Int[ExpandI 
ntegrand[(d + e*x)^m*(f + g*x)^n*(-q + c*x)^p*(q + c*x)^p, x], x], x] /;  ! 
FractionalPowerFactorQ[q]] /; FreeQ[{a, c, d, e, f, g}, x] && ILtQ[p, -1] & 
& IntegersQ[m, n] && NiceSqrtQ[(-a)*c]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3316
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b^p* 
f)   Subst[Int[(a + x)^m*(c + (d/b)*x)^n*(b^2 - x^2)^((p - 1)/2), x], x, b* 
Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IntegerQ[(p - 1) 
/2] && NeQ[a^2 - b^2, 0]
 
3.16.42.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(235\) vs. \(2(116)=232\).

Time = 0.95 (sec) , antiderivative size = 236, normalized size of antiderivative = 1.93

method result size
derivativedivides \(\frac {A \,a^{2} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {B \,a^{2}}{4 \cos \left (d x +c \right )^{4}}+\frac {A a b}{2 \cos \left (d x +c \right )^{4}}+2 B a b \left (\frac {\sin ^{3}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}+\frac {\sin ^{3}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{8}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+A \,b^{2} \left (\frac {\sin ^{3}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}+\frac {\sin ^{3}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{8}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {B \,b^{2} \left (\sin ^{4}\left (d x +c \right )\right )}{4 \cos \left (d x +c \right )^{4}}}{d}\) \(236\)
default \(\frac {A \,a^{2} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {B \,a^{2}}{4 \cos \left (d x +c \right )^{4}}+\frac {A a b}{2 \cos \left (d x +c \right )^{4}}+2 B a b \left (\frac {\sin ^{3}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}+\frac {\sin ^{3}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{8}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+A \,b^{2} \left (\frac {\sin ^{3}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}+\frac {\sin ^{3}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{8}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+\frac {B \,b^{2} \left (\sin ^{4}\left (d x +c \right )\right )}{4 \cos \left (d x +c \right )^{4}}}{d}\) \(236\)
parallelrisch \(\frac {-6 \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \left (A \,a^{2}-\frac {1}{3} A \,b^{2}-\frac {2}{3} B a b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+6 \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \left (A \,a^{2}-\frac {1}{3} A \,b^{2}-\frac {2}{3} B a b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+4 \left (-2 A a b -B \,a^{2}-B \,b^{2}\right ) \cos \left (2 d x +2 c \right )+\left (-2 A a b -B \,a^{2}+B \,b^{2}\right ) \cos \left (4 d x +4 c \right )+\left (3 A \,a^{2}-A \,b^{2}-2 B a b \right ) \sin \left (3 d x +3 c \right )+\left (11 A \,a^{2}+7 A \,b^{2}+14 B a b \right ) \sin \left (d x +c \right )+10 A a b +5 B \,a^{2}+3 B \,b^{2}}{4 d \left (\cos \left (4 d x +4 c \right )+4 \cos \left (2 d x +2 c \right )+3\right )}\) \(263\)
risch \(-\frac {i {\mathrm e}^{i \left (d x +c \right )} \left (3 A \,a^{2} {\mathrm e}^{6 i \left (d x +c \right )}-A \,b^{2} {\mathrm e}^{6 i \left (d x +c \right )}-2 B a b \,{\mathrm e}^{6 i \left (d x +c \right )}+11 A \,a^{2} {\mathrm e}^{4 i \left (d x +c \right )}+7 A \,b^{2} {\mathrm e}^{4 i \left (d x +c \right )}+14 B a b \,{\mathrm e}^{4 i \left (d x +c \right )}+32 i A a b \,{\mathrm e}^{3 i \left (d x +c \right )}-11 A \,a^{2} {\mathrm e}^{2 i \left (d x +c \right )}-7 A \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-8 i B \,b^{2} {\mathrm e}^{5 i \left (d x +c \right )}-14 B a b \,{\mathrm e}^{2 i \left (d x +c \right )}+16 i B \,a^{2} {\mathrm e}^{3 i \left (d x +c \right )}-3 A \,a^{2}+A \,b^{2}+2 B a b -8 i B \,b^{2} {\mathrm e}^{i \left (d x +c \right )}\right )}{4 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A \,a^{2}}{8 d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A \,b^{2}}{8 d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B a b}{4 d}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A \,a^{2}}{8 d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A \,b^{2}}{8 d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B a b}{4 d}\) \(398\)
norman \(\frac {\frac {\left (7 A \,a^{2}+11 A \,b^{2}+22 B a b \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {\left (4 A a b +2 B \,a^{2}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {\left (4 A a b +2 B \,a^{2}\right ) \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {\left (12 A a b +6 B \,a^{2}+4 B \,b^{2}\right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {\left (12 A a b +6 B \,a^{2}+4 B \,b^{2}\right ) \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {\left (16 A a b +8 B \,a^{2}+12 B \,b^{2}\right ) \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {\left (16 A a b +8 B \,a^{2}+12 B \,b^{2}\right ) \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {\left (5 A \,a^{2}+A \,b^{2}+2 B a b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {\left (5 A \,a^{2}+A \,b^{2}+2 B a b \right ) \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {\left (9 A \,a^{2}+5 A \,b^{2}+10 B a b \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {\left (9 A \,a^{2}+5 A \,b^{2}+10 B a b \right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {\left (27 A \,a^{2}+31 A \,b^{2}+62 B a b \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {\left (27 A \,a^{2}+31 A \,b^{2}+62 B a b \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}-\frac {\left (3 A \,a^{2}-A \,b^{2}-2 B a b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}+\frac {\left (3 A \,a^{2}-A \,b^{2}-2 B a b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}\) \(523\)

input
int(sec(d*x+c)^5*(a+b*sin(d*x+c))^2*(A+B*sin(d*x+c)),x,method=_RETURNVERBO 
SE)
 
output
1/d*(A*a^2*(-(-1/4*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*x+c)+3/8*ln(sec(d*x+ 
c)+tan(d*x+c)))+1/4*B*a^2/cos(d*x+c)^4+1/2*A*a*b/cos(d*x+c)^4+2*B*a*b*(1/4 
*sin(d*x+c)^3/cos(d*x+c)^4+1/8*sin(d*x+c)^3/cos(d*x+c)^2+1/8*sin(d*x+c)-1/ 
8*ln(sec(d*x+c)+tan(d*x+c)))+A*b^2*(1/4*sin(d*x+c)^3/cos(d*x+c)^4+1/8*sin( 
d*x+c)^3/cos(d*x+c)^2+1/8*sin(d*x+c)-1/8*ln(sec(d*x+c)+tan(d*x+c)))+1/4*B* 
b^2*sin(d*x+c)^4/cos(d*x+c)^4)
 
3.16.42.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.42 \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=\frac {{\left (3 \, A a^{2} - 2 \, B a b - A b^{2}\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (3 \, A a^{2} - 2 \, B a b - A b^{2}\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 8 \, B b^{2} \cos \left (d x + c\right )^{2} + 4 \, B a^{2} + 8 \, A a b + 4 \, B b^{2} + 2 \, {\left (2 \, A a^{2} + 4 \, B a b + 2 \, A b^{2} + {\left (3 \, A a^{2} - 2 \, B a b - A b^{2}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{16 \, d \cos \left (d x + c\right )^{4}} \]

input
integrate(sec(d*x+c)^5*(a+b*sin(d*x+c))^2*(A+B*sin(d*x+c)),x, algorithm="f 
ricas")
 
output
1/16*((3*A*a^2 - 2*B*a*b - A*b^2)*cos(d*x + c)^4*log(sin(d*x + c) + 1) - ( 
3*A*a^2 - 2*B*a*b - A*b^2)*cos(d*x + c)^4*log(-sin(d*x + c) + 1) - 8*B*b^2 
*cos(d*x + c)^2 + 4*B*a^2 + 8*A*a*b + 4*B*b^2 + 2*(2*A*a^2 + 4*B*a*b + 2*A 
*b^2 + (3*A*a^2 - 2*B*a*b - A*b^2)*cos(d*x + c)^2)*sin(d*x + c))/(d*cos(d* 
x + c)^4)
 
3.16.42.6 Sympy [F(-1)]

Timed out. \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**5*(a+b*sin(d*x+c))**2*(A+B*sin(d*x+c)),x)
 
output
Timed out
 
3.16.42.7 Maxima [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.40 \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=\frac {{\left (3 \, A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (3 \, A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left (\sin \left (d x + c\right ) - 1\right ) + \frac {2 \, {\left (4 \, B b^{2} \sin \left (d x + c\right )^{2} - {\left (3 \, A a^{2} - 2 \, B a b - A b^{2}\right )} \sin \left (d x + c\right )^{3} + 2 \, B a^{2} + 4 \, A a b - 2 \, B b^{2} + {\left (5 \, A a^{2} + 2 \, B a b + A b^{2}\right )} \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1}}{16 \, d} \]

input
integrate(sec(d*x+c)^5*(a+b*sin(d*x+c))^2*(A+B*sin(d*x+c)),x, algorithm="m 
axima")
 
output
1/16*((3*A*a^2 - 2*B*a*b - A*b^2)*log(sin(d*x + c) + 1) - (3*A*a^2 - 2*B*a 
*b - A*b^2)*log(sin(d*x + c) - 1) + 2*(4*B*b^2*sin(d*x + c)^2 - (3*A*a^2 - 
 2*B*a*b - A*b^2)*sin(d*x + c)^3 + 2*B*a^2 + 4*A*a*b - 2*B*b^2 + (5*A*a^2 
+ 2*B*a*b + A*b^2)*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1))/ 
d
 
3.16.42.8 Giac [A] (verification not implemented)

Time = 0.47 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.53 \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=\frac {{\left (3 \, A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right ) - {\left (3 \, A a^{2} - 2 \, B a b - A b^{2}\right )} \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (3 \, A a^{2} \sin \left (d x + c\right )^{3} - 2 \, B a b \sin \left (d x + c\right )^{3} - A b^{2} \sin \left (d x + c\right )^{3} - 4 \, B b^{2} \sin \left (d x + c\right )^{2} - 5 \, A a^{2} \sin \left (d x + c\right ) - 2 \, B a b \sin \left (d x + c\right ) - A b^{2} \sin \left (d x + c\right ) - 2 \, B a^{2} - 4 \, A a b + 2 \, B b^{2}\right )}}{{\left (\sin \left (d x + c\right )^{2} - 1\right )}^{2}}}{16 \, d} \]

input
integrate(sec(d*x+c)^5*(a+b*sin(d*x+c))^2*(A+B*sin(d*x+c)),x, algorithm="g 
iac")
 
output
1/16*((3*A*a^2 - 2*B*a*b - A*b^2)*log(abs(sin(d*x + c) + 1)) - (3*A*a^2 - 
2*B*a*b - A*b^2)*log(abs(sin(d*x + c) - 1)) - 2*(3*A*a^2*sin(d*x + c)^3 - 
2*B*a*b*sin(d*x + c)^3 - A*b^2*sin(d*x + c)^3 - 4*B*b^2*sin(d*x + c)^2 - 5 
*A*a^2*sin(d*x + c) - 2*B*a*b*sin(d*x + c) - A*b^2*sin(d*x + c) - 2*B*a^2 
- 4*A*a*b + 2*B*b^2)/(sin(d*x + c)^2 - 1)^2)/d
 
3.16.42.9 Mupad [B] (verification not implemented)

Time = 12.18 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.48 \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=\frac {\sin \left (c+d\,x\right )\,\left (\frac {5\,A\,a^2}{8}+\frac {B\,a\,b}{4}+\frac {A\,b^2}{8}\right )+\frac {B\,a^2}{4}-\frac {B\,b^2}{4}+{\sin \left (c+d\,x\right )}^3\,\left (-\frac {3\,A\,a^2}{8}+\frac {B\,a\,b}{4}+\frac {A\,b^2}{8}\right )+\frac {B\,b^2\,{\sin \left (c+d\,x\right )}^2}{2}+\frac {A\,a\,b}{2}}{d\,\left ({\sin \left (c+d\,x\right )}^4-2\,{\sin \left (c+d\,x\right )}^2+1\right )}-\frac {\mathrm {atanh}\left (\frac {4\,\sin \left (c+d\,x\right )\,\left (-\frac {3\,A\,a^2}{16}+\frac {B\,a\,b}{8}+\frac {A\,b^2}{16}\right )}{-\frac {3\,A\,a^2}{4}+\frac {B\,a\,b}{2}+\frac {A\,b^2}{4}}\right )\,\left (-\frac {3\,A\,a^2}{8}+\frac {B\,a\,b}{4}+\frac {A\,b^2}{8}\right )}{d} \]

input
int(((A + B*sin(c + d*x))*(a + b*sin(c + d*x))^2)/cos(c + d*x)^5,x)
 
output
(sin(c + d*x)*((5*A*a^2)/8 + (A*b^2)/8 + (B*a*b)/4) + (B*a^2)/4 - (B*b^2)/ 
4 + sin(c + d*x)^3*((A*b^2)/8 - (3*A*a^2)/8 + (B*a*b)/4) + (B*b^2*sin(c + 
d*x)^2)/2 + (A*a*b)/2)/(d*(sin(c + d*x)^4 - 2*sin(c + d*x)^2 + 1)) - (atan 
h((4*sin(c + d*x)*((A*b^2)/16 - (3*A*a^2)/16 + (B*a*b)/8))/((A*b^2)/4 - (3 
*A*a^2)/4 + (B*a*b)/2))*((A*b^2)/8 - (3*A*a^2)/8 + (B*a*b)/4))/d